Semi-SANE: A Jefferson Lab Hall C Experiment

E04-113: P. Bosted, D. Day, X. Jiang and M. Jones co-spokespersons

ANL, Duke, FIU, Hampton, JLab, Kentucky, UMass, Norfolk, ODU, RPI, Rutgers, Temple, UVa, W&M, Yerevan, Regina, IHEP-Protvino.

High precision asymmetry data in deep-inelastic $\vec{N}(\vec{e},e'h)$ ($N=p,d,h=\pi^\pm,K^\pm$).

- $E_0 = 6$ GeV, $P_B = 0.80$.
- e-Arm: a calorimeter array @30°.
- h-Arm: HMS spectrometer @10.8°, 2.71 GeV/c, $z\approx 0.5$. Particle ID detectors for π/K separation.
- Target: polarized NH $_3$ (\vec{p}) and LiD ($\vec{d}=\vec{p}+\vec{n}$).

Nucleon Spin Structure — in Flavor

Global QCD fits to the inclusive DIS data.

- Have to assume the sea behavior. As in BB: $\Delta \bar{q} = \Delta \bar{u} = \Delta \bar{d} = \Delta \bar{s}$.
- Inclusive data can not distinguish between q and \bar{q} since $\sigma = \sum_f e_f^2 q_f$.
- Only one flavor non-singlet accessible: $\Delta q_3 = (\Delta u + \Delta \bar{u}) (\Delta d + \Delta \bar{d}).$
- Can not access $\Delta ar{u} \Delta ar{d}$.

Semi-inclusive deep inelastic scattering (SIDIS) offers extra handle of q vs \bar{q} due to flavor tagging. Provide access to the valence and the sea structure of the nucleon spin.

Flavor Tagging in Semi-Inclusive DIS

Assume the leading order naive x-z factorization (name invented by Ji, Ma and Yuan):

$$A_{1N}^{h}(x,Q^{2},z) \equiv \frac{\Delta \sigma^{h}(x,Q^{2},z)}{\sigma^{h}(x,Q^{2},z)} = \frac{\sum_{f} e_{f}^{2} \Delta q_{f}(x,Q^{2}) \cdot D_{f}^{h}(z,Q^{2})}{\sum_{f} e_{f}^{2} q_{f}(x,Q^{2}) \cdot D_{f}^{h}(z,Q^{2})}.$$

Each asymmetry measurement provides an independent constrain on Δq_f .

HERMES Flavor Decomposition: $\vec{A} = \mathcal{P}_f^h(x) \cdot \vec{Q}$

From measurements: $\vec{A} = \left(A_{1p}^{\pi^+}, A_{1p}^{\pi^-}, A_{1d}^{\pi^+}, A_{1d}^{\pi^-}, A_{1d}^{K^+}, A_{1d}^{K^-}, A_{1p}, A_{1d}\right)$

Solve for: $\vec{Q}=\left(x\Delta u,x\Delta d,x\Delta \bar{u},x\Delta \bar{d},x\Delta s\right)$.

Calculate "Purity" from a LUND based Monte Carlo:

$$\mathcal{P}_f^h(x) = \frac{e_f^2 q_f(x) \int_{0.2}^{0.8} dz D_f^h(z)}{\sum_i e_i^2 q_i(x) \int_{0.2}^{0.8} dz D_i^h(z)}$$

Assumes:

Leading order x-z factorization and current fragmentation.

Isospin symmetry and charge conjugation. Purity from Monte Carlo.

Leading-Order Naive x-z Factorization at JLab 6 GeV ?

Hall C E00-108 preliminary. Cross section reproduced by a Monte Carlo based on LO x-z factorization.

Hall B eg1b: semi-inclusive asymmetry $A_{1p}^{\pi^+}$ agree with HERMES, SMC, fall on the same curve of inclusive A_{1p} . No clear z-dependence observed for z>0.5.

Leading order naive x-z factorization is not violated much.

The Semi-SANE Experiment: $\vec{N}(\vec{e},e'h)$

- $E_0 = 6$ GeV, I=80 nA $P_B = 0.80$.
- e-Arm: BETA as in SANE, $\Delta\Omega\approx 200$ msr, $@30^\circ$ in stead of 40° . GEP-III calorimeter + gas Č.
- h-Arm: HMS@10.8°, 2.71 GeV/c, $z \approx 0.5$. Gas Č + aerogel for π/K identification
- Target: long. polarized NH₃ and LiD (SLAC and Hall C).

Well-controlled phase space and hadron PID

$$A_{1N}^{\pi^{+}\pm\pi^{-}} = \frac{\Delta\sigma_{N}^{\pi^{+}}\pm\Delta\sigma_{N}^{\pi^{-}}}{\sigma_{N}^{\pi^{+}}\pm\sigma_{N}^{\pi^{-}}} = \frac{A_{1N}^{\pi^{+}}\pm A_{1N}^{\pi^{-}}\cdot r}{1\pm r}, \quad r = \frac{\sigma^{\pi^{-}}}{\sigma^{\pi^{+}}} = 0.27 \sim 0.64.$$

(Method not applies for low-z experiments where $\sigma^{\pi^-}/\sigma^{\pi^+}\sim 1.0$)

Fit into the SANE (E03-109) setup, need a few shifts of change-over time.

Particle Identification in HMS

A pure pion sample for flavor decomposition. Free Kaons for extra physics.

- \bullet Existing gas Č (@1.5atm) and aerogel detector (n=1.030) provide π/K separation.
- Shower counters provide clear π^-/e^- separation.
- $P_{HMS}=2.71$ GeV/c, focus on zpprox0.5 events.
- HMS-BETA time-of-flight helps to eliminate accidentals.

Kinematics and Phase Space Coverage

 $0.122 < x < 0.413, \langle Q^2 \rangle = 2.2 \, \mathrm{GeV}^2. \quad z > 0.5.$ Only shown $W' > 1.5 \, \mathrm{GeV}.$

Angular Coverage in (θ_{qh}, ϕ_l^h)

We cover at least 180° in ϕ_l^h .

Related terms in ϕ_l^h :

see Boer and Mulders, PRD57, 5780 (1998)

- $\cos(2\phi_l^h)$ term in $d\sigma^h$ averaged out.
 - $\cos(\phi_l^h)$ term in A_{LL} is small $(\propto S_T)$, reverse sign when target spin is reversed.
 - Unexpected $\sin(\phi_l^h)$ term in A_{LL} can be checked with data.
 - Extra free physics: large enough coverage in ϕ_l^h even allow extraction of single-spin asymmetry A_{UL} for $\sin\phi_l^h$ and $\sin(2\phi_l^h)$ moments.

The Expected Results: Double-Spin Asymmetries ${\cal A}^h_{1N}$

Approved for 25 days beam time. Significant improvements on the statistical accuracy of $A_{1N}^{\pi^\pm}$. First data on $A_{1p}^{K^\pm}$.

The Combined Asymmetries: $A_{1N}^{\pi^++\pi^-}$ and $A_{1N}^{\pi^+-\pi^-}$

Get rid of some higher order complications by using the observables related to $\pi^+ - \pi^-$.

The Expected Results on Δq

Jefferson Lab E04-113 $E_0=6~{\rm GeV}$

$$\Delta u_v = \Delta u - \Delta \bar{u}$$

$$\Delta d_v = \Delta d - \Delta \bar{d}$$

Tow independent methods of favor decomposition:

- i, Christova-Leader method.
- ii, "Purity" at a fixed-z.

Statistical uncertainties dominate.

One expects at least $\Delta \bar{u} - \Delta \bar{d} > (\bar{d} - \bar{u}) \ !!!$

Flavor Asymmetry in the Nucleon Sea

Many other model predicted large $\Delta \bar{u} - \Delta \bar{d}$. In Chiral-quark soliton model, $\Delta \bar{u} - \Delta \bar{d}$ appears in LO (N_c^2) while $\bar{d} - \bar{u}$ appears in NLO (N_c) .

Fermilab $pp,pd\to \mu^+\mu^-$ data. Many models explain $\bar d-\bar u$, including the meson-cloud model (π) which predicts $\Delta \bar u = \Delta \bar d = 0$.

Pauli-blocking model: $\int_0^1 [\Delta \bar{u}(x) - \Delta \bar{d}(x)] dx = \frac{5}{3} \cdot \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \approx 0.2.$

Test a wide range of model predictions of $\int_0^1 (\Delta \bar{u} - \Delta \bar{d}) dx$:

- Meson cloud (π) model: 0.
- Chiral-quark soliton model: 0.31.
- Pauli-blocking model: $0.2 \sim 0.3$.
- Instanton model: 0.2
- Statistical model: 0.12

Methods of Spin-Flavor Decomposition

Four leading-order methods:

- The LO Christova-Leader method: $A_{1p}^{\pi^+-\pi^-}$, $A_{1d}^{\pi^+-\pi^-} \Rightarrow \Delta u_v, \Delta d_v$. Use $g_1^p(x)-g_1^n(x)$ as inputs to obtain $\Delta \bar{u} \Delta \bar{d}$.
- "Fixed-z purity" method: calculate purity (inputs: PDFs and ratio of $D^-(z)/D^+(z)$) for well-localized z-bins. Solve linear equations $\vec{A}(x,z)=\mathcal{P}(x,z)\vec{Q}(x)$.
- Monte Carlo purity method (HERMES). Purity from a LUND based Monte Carlo.
- LO global fit.

Two next-to-leading order methods:

- The NLO Christova-Leader method (inputs: PDFs and $D^+(z) D^-(z)$).
- NLO global fit method (D. de Florian, G. Navarro and R. Sassot hep-ex/0504155).

Consistency checks between different methods provide clear measures of systematic uncertainty associated with the favor decomposition methods.

Five-Flavor Δq : the Fixed-z Method

Systematic uncertainties are expected to be similar to that of HERMES.

Except that:

 Only the ratios of fragmentation functions are involved in the purity at fixed-z. High precision asymmetry data in deep-inelastic $\vec{N}(\vec{e},e'h)$ ($N=p,d,h=\pi^\pm,K^\pm$).

- Double-spin asymmetry A_{1N}^h and the combined asymmetry $A_{1N}^{h\pm \bar{h}}$.
- Δu_v , Δd_v from $A_{1N}^{\pi^+-\pi^-}$ at LO and NLO (Christova-Leader method). Sensitive to $\Delta \bar{u} \Delta \bar{d}$ when combined with inclusive data $g_1^p g_1^n$.

Built-in measures of systematic uncertainties:

- Measure the violation of LO x-z factorization using $A_{1N}^{\pi^++\pi^-}-A_{1N}$.
- Four independent methods of LO spin-flavor decomposition, two NLO methods.

Fit into the SANE setup (E03-109). Request 25 days of 6 GeV beam in Hall C.